Augmenting Transformers with KNN-Based Composite Memory for Dialogue

04/27/2020
by   Angela Fan, et al.
0

Various machine learning tasks can benefit from access to external information of different modalities, such as text and images. Recent work has focused on learning architectures with large memories capable of storing this knowledge. We propose augmenting generative Transformer neural networks with KNN-based Information Fetching (KIF) modules. Each KIF module learns a read operation to access fixed external knowledge. We apply these modules to generative dialogue modeling, a challenging task where information must be flexibly retrieved and incorporated to maintain the topic and flow of conversation. We demonstrate the effectiveness of our approach by identifying relevant knowledge from Wikipedia, images, and human-written dialogue utterances, and show that leveraging this retrieved information improves model performance, measured by automatic and human evaluation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset