Augmenting the Algebraic Connectivity of Graphs

06/25/2020 ∙ by Bogdan-Adrian Manghiuc, et al. ∙ 0

For any undirected graph G=(V,E) and a set E_W of candidate edges with E∩ E_W=∅, the (k,γ)-spectral augmentability problem is to find a set F of k edges from E_W with appropriate weighting, such that the algebraic connectivity of the resulting graph H=(V,E∪ F) is least γ. Because of a tight connection between the algebraic connectivity and many other graph parameters, including the graph's conductance and the mixing time of random walks in a graph, maximising the resulting graph's algebraic connectivity by adding a small number of edges has been studied over the past 15 years. In this work we present an approximate and efficient algorithm for the (k,γ)-spectral augmentability problem, and our algorithm runs in almost-linear time under a wide regime of parameters. Our main algorithm is based on the following two novel techniques developed in the paper, which might have applications beyond the (k,γ)-spectral augmentability problem. (1) We present a fast algorithm for solving a feasibility version of an SDP for the algebraic connectivity maximisation problem from [GB06]. Our algorithm is based on the classic primal-dual framework for solving SDP, which in turn uses the multiplicative weight update algorithm. We present a novel approach of unifying SDP constraints of different matrix and vector variables and give a good separation oracle accordingly. (2) We present an efficient algorithm for the subgraph sparsification problem, and for a wide range of parameters our algorithm runs in almost-linear time, in contrast to the previously best known algorithm running in at least Ω(n^2mk) time [KMST10]. Our analysis shows how the randomised BSS framework can be generalised in the setting of subgraph sparsification, and how the potential functions can be applied to approximately keep track of different subspaces.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.