Augmenting conformers with structured state space models for online speech recognition

09/15/2023
by   Haozhe Shan, et al.
0

Online speech recognition, where the model only accesses context to the left, is an important and challenging use case for ASR systems. In this work, we investigate augmenting neural encoders for online ASR by incorporating structured state-space sequence models (S4), which are a family of models that provide a parameter-efficient way of accessing arbitrarily long left context. We perform systematic ablation studies to compare variants of S4 models and propose two novel approaches that combine them with convolutions. We find that the most effective design is to stack a small S4 using real-valued recurrent weights with a local convolution, allowing them to work complementarily. Our best model achieves WERs of 4.01 outperforming Conformers with extensively tuned convolution.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset