Audio-text Retrieval in Context

03/25/2022
by   Siyu Lou, et al.
0

Audio-text retrieval based on natural language descriptions is a challenging task. It involves learning cross-modality alignments between long sequences under inadequate data conditions. In this work, we investigate several audio features as well as sequence aggregation methods for better audio-text alignment. Moreover, through a qualitative analysis we observe that semantic mapping is more important than temporal relations in contextual retrieval. Using pre-trained audio features and a descriptor-based aggregation method, we build our contextual audio-text retrieval system. Specifically, we utilize PANNs features pre-trained on a large sound event dataset and NetRVLAD pooling, which directly works with averaged descriptors. Experiments are conducted on the AudioCaps and CLOTHO datasets, and results are compared with the previous state-of-the-art system. With our proposed system, a significant improvement has been achieved on bidirectional audio-text retrieval, on all metrics including recall, median and mean rank.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro