AU-Guided Unsupervised Domain Adaptive Facial Expression Recognition

12/18/2020 ∙ by Kai Wang, et al. ∙ 2

The domain diversities including inconsistent annotation and varied image collection conditions inevitably exist among different facial expression recognition (FER) datasets, which pose an evident challenge for adapting the FER model trained on one dataset to another one. Recent works mainly focus on domain-invariant deep feature learning with adversarial learning mechanism, ignoring the sibling facial action unit (AU) detection task which has obtained great progress. Considering AUs objectively determine facial expressions, this paper proposes an AU-guided unsupervised Domain Adaptive FER (AdaFER) framework. In AdaFER, we first leverage an advanced model for AU detection on both source and target domain. Then, we compare the AU results to perform AU-guided annotating, i.e., target faces that own the same AUs with source faces would inherit the labels from source domain. Meanwhile, to achieve domain-invariant compact features, we utilize an AU-guided triplet training which randomly collects anchor-positive-negative triplets on both domains with AUs. We conduct extensive experiments on several popular benchmarks and show that AdaFER achieves state-of-the-art results on all the benchmarks.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 3

page 4

page 6

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.