Attractor Metadynamics in Adapting Neural Networks

04/22/2014
by   Claudius Gros, et al.
0

Slow adaption processes, like synaptic and intrinsic plasticity, abound in the brain and shape the landscape for the neural dynamics occurring on substantially faster timescales. At any given time the network is characterized by a set of internal parameters, which are adapting continuously, albeit slowly. This set of parameters defines the number and the location of the respective adiabatic attractors. The slow evolution of network parameters hence induces an evolving attractor landscape, a process which we term attractor metadynamics. We study the nature of the metadynamics of the attractor landscape for several continuous-time autonomous model networks. We find both first- and second-order changes in the location of adiabatic attractors and argue that the study of the continuously evolving attractor landscape constitutes a powerful tool for understanding the overall development of the neural dynamics.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset