Attention networks for image-to-text

12/11/2017 ∙ by Jason Poulos, et al. ∙ 0

The paper approaches the problem of image-to-text with attention-based encoder-decoder networks that are trained to handle sequences of characters rather than words. We experiment on lines of text from a popular handwriting database with different attention mechanisms for the decoder. The model trained with softmax attention achieves the lowest test error, outperforming several other RNN-based models. Our results show that softmax attention is able to learn a linear alignment whereas the alignment generated by sigmoid attention is linear but much less precise.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 6

page 10

page 11

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.