DeepAI AI Chat
Log In Sign Up

Attention Guided Cosine Margin For Overcoming Class-Imbalance in Few-Shot Road Object Detection

11/12/2021
by   Ashutosh Agarwal, et al.
Indian Institute of Technology Delhi
Intel
0

Few-shot object detection (FSOD) localizes and classifies objects in an image given only a few data samples. Recent trends in FSOD research show the adoption of metric and meta-learning techniques, which are prone to catastrophic forgetting and class confusion. To overcome these pitfalls in metric learning based FSOD techniques, we introduce Attention Guided Cosine Margin (AGCM) that facilitates the creation of tighter and well separated class-specific feature clusters in the classification head of the object detector. Our novel Attentive Proposal Fusion (APF) module minimizes catastrophic forgetting by reducing the intra-class variance among co-occurring classes. At the same time, the proposed Cosine Margin Cross-Entropy loss increases the angular margin between confusing classes to overcome the challenge of class confusion between already learned (base) and newly added (novel) classes. We conduct our experiments on the challenging India Driving Dataset (IDD), which presents a real-world class-imbalanced setting alongside popular FSOD benchmark PASCAL-VOC. Our method outperforms State-of-the-Art (SoTA) approaches by up to 6.4 mAP points on the IDD-OS and up to 2.0 mAP points on the IDD-10 splits for the 10-shot setting. On the PASCAL-VOC dataset, we outperform existing SoTA approaches by up to 4.9 mAP points.

READ FULL TEXT

page 1

page 5

page 7

10/28/2021

Meta Guided Metric Learner for Overcoming Class Confusion in Few-Shot Road Object Detection

Localization and recognition of less-occurring road objects have been a ...
01/29/2021

Few-Shot Learning for Road Object Detection

Few-shot learning is a problem of high interest in the evolution of deep...
07/23/2020

Few-Shot Object Detection and Viewpoint Estimation for Objects in the Wild

Detecting objects and estimating their viewpoint in images are key tasks...
03/08/2021

Beyond Max-Margin: Class Margin Equilibrium for Few-shot Object Detection

Few-shot object detection has made substantial progressby representing n...
04/11/2022

CFA: Constraint-based Finetuning Approach for Generalized Few-Shot Object Detection

Few-shot object detection (FSOD) seeks to detect novel categories with l...
03/24/2023

Adaptive Base-class Suppression and Prior Guidance Network for One-Shot Object Detection

One-shot object detection (OSOD) aims to detect all object instances tow...
11/24/2022

Few-shot Object Detection with Refined Contrastive Learning

Due to the scarcity of sampling data in reality, few-shot object detecti...