Atomistic structure learning

02/27/2019
by   Mathias S. Jørgensen, et al.
14

One endeavour of modern physical chemistry is to use bottom-up approaches to design materials and drugs with desired properties. Here we introduce an atomistic structure learning algorithm (ASLA) that utilizes a convolutional neural network to build 2D compounds and layered structures atom by atom. The algorithm takes no prior data or knowledge on atomic interactions but inquires a first-principles quantum mechanical program for physical properties. Using reinforcement learning, the algorithm accumulates knowledge of chemical compound space for a given number and type of atoms and stores this in the neural network, ultimately learning the blueprint for the optimal structural arrangement of the atoms for a given target property. ASLA is demonstrated to work on diverse problems, including grain boundaries in graphene sheets, organic compound formation and a surface oxide structure. This approach to structure prediction is a first step toward direct manipulation of atoms with artificially intelligent first principles computer codes.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset