Atomic subgraphs and the statistical mechanics of networks

by   Anatol E. Wegner, et al.

We develop random graph models where graphs are generated by connecting not only pairs of vertices by edges but also larger subsets of vertices by copies of small atomic subgraphs of arbitrary topology. This allows the for the generation of graphs with extensive numbers of triangles and other network motifs commonly observed in many real world networks. More specifically we focus on maximum entropy ensembles under constraints placed on the counts and distributions of atomic subgraphs and derive general expressions for the entropy of such models. We also present a procedure for combining distributions of multiple atomic subgraphs that enables the construction of models with fewer parameters. Expanding the model to include atoms with edge and vertex labels we obtain a general class of models that can be parametrized in terms of basic building blocks and their distributions that includes many widely used models as special cases. These models include random graphs with arbitrary distributions of subgraphs, random hypergraphs, bipartite models, stochastic block models, models of multilayer networks and their degree corrected and directed versions. We show that the entropy for all these models can be derived from a single expression that is characterized by the symmetry groups of atomic subgraphs.



page 1

page 2

page 3

page 4


Maximal degrees in subgraphs of Kneser graphs

In this paper, we study the maximum degree in non-empty induced subgraph...

Towards Gallai's path decomposition conjecture

A path decomposition of a graph G is a collection of edge-disjoint paths...

Network Entropy based on Cluster Expansion on Motifs for Undirected Graphs

The structure of the network can be described by motifs, which are subgr...

Network synchronizability analysis: the theory of subgraphs and complementary graphs

In this paper, subgraphs and complementary graphs are used to analyze th...

Edge Partitions of Complete Geometric Graphs (Part 2)

Recently, the second and third author showed that complete geometric gra...

Bootstrapping Exchangeable Random Graphs

We introduce two new bootstraps for exchangeable random graphs. One, the...

Iterative models for complex networks formed by extending cliques

We consider a new model for complex networks whose underlying mechanism ...
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.