Atari-5: Distilling the Arcade Learning Environment down to Five Games

10/05/2022
by   Matthew Aitchison, et al.
0

The Arcade Learning Environment (ALE) has become an essential benchmark for assessing the performance of reinforcement learning algorithms. However, the computational cost of generating results on the entire 57-game dataset limits ALE's use and makes the reproducibility of many results infeasible. We propose a novel solution to this problem in the form of a principled methodology for selecting small but representative subsets of environments within a benchmark suite. We applied our method to identify a subset of five ALE games, called Atari-5, which produces 57-game median score estimates within 10 values. Extending the subset to 10-games recovers 80 log-scores for all games within the 57-game set. We show this level of compression is possible due to a high degree of correlation between many of the games in ALE.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset