Asymptotics for Outlier Hypothesis Testing

01/23/2022
by   Lin Zhou, et al.
0

We revisit the outlier hypothesis testing framework of Li et al. (TIT 2014) and derive fundamental limits for the optimal test. In outlier hypothesis testing, one is given multiple observed sequences, where most sequences are generated i.i.d. from a nominal distribution. The task is to discern the set of outlying sequences that are generated according to anomalous distributions. The nominal and anomalous distributions are unknown. We consider the case of multiple outliers where the number of outliers is unknown and each outlier can follow a different anomalous distribution. Under this setting, we study the tradeoff among the probabilities of misclassification error, false alarm and false reject. Specifically, we propose a threshold-based test that ensures exponential decay of misclassification error and false alarm probabilities. We study two constraints on the false reject probability, with one constraint being that it is a non-vanishing constant and the other being that it has an exponential decay rate. For both cases, we characterize bounds on the false reject probability, as a function of the threshold, for each tuple of nominal and anomalous distributions. Finally, we demonstrate the asymptotic optimality of our test under the generalized Neyman-Pearson criterion.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset