Asymptotic performance of metacyclic codes

06/18/2019
by   Martino Borello, et al.
0

A finite group with a cyclic normal subgroup N such that G/N is cyclic is said to be metacyclic. A code over a finite field F is a metacyclic code if it is a left ideal in the group algebra FG for G a metacyclic group. Metacyclic codes are generalizations of dihedral codes, and can be constructed as quasi-cyclic codes with an extra automorphism. In this paper, we prove that metacyclic codes form an asymptotically good family of codes. Our proof relies on a version of Artin's conjecture for primitive roots in arithmetic progression being true under the Generalized Riemann Hypothesis (GRH).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset