Asymptotic Performance Analysis of Non-Bayesian Quickest Change Detection with an Energy Harvesting Sensor

01/14/2020
by   Subhrakanti Dey, et al.
0

In this paper, we consider a non-Bayesian sequential change detection based on the Cumulative Sum (CUSUM) algorithm employed by an energy harvesting sensor where the distributions before and after the change are assumed to be known. In a slotted discrete-time model, the sensor, exclusively powered by randomly available harvested energy, obtains a sample and computes the log-likelihood ratio of the two distributions if it has enough energy to sense and process a sample. If it does not have enough energy in a given slot, it waits until it harvests enough energy to perform the task in a future time slot. We derive asymptotic expressions for the expected detection delay (when a change actually occurs), and the asymptotic tail distribution of the run-length to a false alarm (when a change never happens). We show that when the average harvested energy (H̅) is greater than or equal to the energy required to sense and process a sample (E_s), standard existing asymptotic results for the CUSUM test apply since the energy storage level at the sensor is greater than E_s after a sufficiently long time. However, when the H̅ < E_s, the energy storage level can be modelled by a positive Harris recurrent Markov chain with a unique stationary distribution. Using asymptotic results from Markov random walk theory and associated nonlinear Markov renewal theory, we establish asymptotic expressions for the expected detection delay and asymptotic exponentiality of the tail distribution of the run-length to a false alarm in this non-trivial case. Numerical results are provided to support the theoretical results.

READ FULL TEXT
research
09/07/2021

On the CUSUM procedure for phase-type distributions: a Lévy fluctuation theory approach

We introduce a new method analyzing the cumulative sum (CUSUM) procedure...
research
01/15/2018

A Semi-Parametric Binning Approach to Quickest Change Detection

The problem of quickest detection of a change in distribution is conside...
research
11/06/2017

Quickest Change Detection under Transient Dynamics: Theory and Asymptotic Analysis

The problem of quickest change detection (QCD) under transient dynamics ...
research
10/04/2021

Quickest Change Detection with Non-stationary and Composite Post-change Distribution

The problem of quickest detection of a change in the distribution of a s...
research
02/01/2023

Quickest Change Detection for Unnormalized Statistical Models

Classical quickest change detection algorithms require modeling pre-chan...
research
05/30/2020

Wireless Power Transfer Under Kullback-Leibler Distribution Uncertainty: A Mathematical Framework

In this letter, we study the performance of a wireless power transfer sy...
research
06/19/2019

Bump detection in the presence of dependency: Does it ease or does it load?

We provide the asymptotic minimax detection boundary for a bump, i.e. an...

Please sign up or login with your details

Forgot password? Click here to reset