AsymML: An Asymmetric Decomposition Framework for Privacy-Preserving DNN Training and Inference

10/04/2021
by   Yue Niu, et al.
0

Leveraging parallel hardware (e.g. GPUs) to conduct deep neural network (DNN) training/inference, though significantly speeds up the computations, raises several data privacy concerns. Trusted execution environments (TEEs) have emerged as a promising solution to enable privacy-preserving inference and training. TEEs, however, have limited memory and computation resources which renders it not comparable to untrusted parallel hardware in performance. To mitigate the trade-off between privacy and computing performance, we propose an asymmetric model decomposition framework, AsymML, to (1) accelerate training/inference using parallel hardware; and (2) preserve privacy using TEEs. By exploiting the low-rank characteristics in data and intermediate features, AsymML asymmetrically splits a DNN model into trusted and untrusted parts: the trusted part features privacy-sensitive data but incurs small compute/memory costs; while the untrusted part is computationally-intensive but not privacy-sensitive. Computing performance and privacy are guaranteed by respectively delegating the trusted and untrusted part to TEEs and GPUs. Furthermore, we present a theoretical rank bound analysis showing that low-rank characteristics are still preserved in intermediate features, which guarantees efficiency of AsymML. Extensive evaluations on DNN models shows that AsymML delivers 11.2× speedup in inference, 7.6× in training compared to the TEE-only executions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset