Asymmetric Proxy Loss for Multi-View Acoustic Word Embeddings

03/30/2022
by   Myunghun Jung, et al.
0

Acoustic word embeddings (AWEs) are discriminative representations of speech segments, and learned embedding space reflects the phonetic similarity between words. With multi-view learning, where text labels are considered as supplementary input, AWEs are jointly trained with acoustically grounded word embeddings (AGWEs). In this paper, we expand the multi-view approach into a proxy-based framework for deep metric learning by equating AGWEs with proxies. A simple modification in computing the similarity matrix allows the general pair weighting to formulate the data-to-proxy relationship. Under the systematized framework, we propose an asymmetric-proxy loss that combines different parts of loss functions asymmetrically while keeping their merits. It follows the assumptions that the optimal function for anchor-positive pairs may differ from one for anchor-negative pairs, and a proxy may have a different impact when it substitutes for different positions in the triplet. We present comparative experiments with various proxy-based losses including our asymmetric-proxy loss, and evaluate AWEs and AGWEs for word discrimination tasks on WSJ corpus. The results demonstrate the effectiveness of the proposed method.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset