AsymDPOP: Complete Inference for Asymmetric Distributed Constraint Optimization Problems

05/28/2019
by   Yanchen Deng, et al.
0

Asymmetric distributed constraint optimization problems (ADCOPs) are an emerging model for coordinating agents with personal preferences. However, the existing inference-based complete algorithms which use local eliminations cannot be applied to ADCOPs, as the parent agents are required to transfer their private functions to their children. Rather than disclosing private functions explicitly to facilitate local eliminations, we solve the problem by enforcing delayed eliminations and propose AsymDPOP, the first inference-based complete algorithm for ADCOPs. To solve the severe scalability problems incurred by delayed eliminations, we propose to reduce the memory consumption by propagating a set of smaller utility tables instead of a joint utility table, and to reduce the computation efforts by sequential optimizations instead of joint optimizations. The empirical evaluation indicates that AsymDPOP significantly outperforms the state-of-the-arts, as well as the vanilla DPOP with PEAV formulation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset