Assistive Diagnostic Tool for Brain Tumor Detection using Computer Vision
Today, over 700,000 people are living with brain tumors in the United States. Brain tumors can spread very quickly to other parts of the brain and the spinal cord unless necessary preventive action is taken. Thus, the survival rate for this disease is less than 40 diagnosis of a brain tumor could be the difference between life and death for some. However, brain tumor detection and segmentation are tedious and time-consuming processes as it can only be done by radiologists and clinical experts. The use of computer vision techniques, such as Mask R Convolutional Neural Network (Mask R CNN), to detect and segment brain tumors can mitigate the possibility of human error while increasing prediction accuracy rates. The goal of this project is to create an assistive diagnostics tool for brain tumor detection and segmentation. Transfer learning was used with the Mask R CNN, and necessary parameters were accordingly altered, as a starting point. The model was trained with 20 epochs and later tested. The prediction segmentation matched 90 perform at a high level. Once the model was finalized, the application running on Flask was created. The application will serve as a tool for medical professionals. It allows doctors to upload patient brain tumor MRI images in order to receive immediate results on the diagnosis and segmentation for each patient.
READ FULL TEXT