Assessment of algorithms for mitosis detection in breast cancer histopathology images

11/21/2014 ∙ by Mitko Veta, et al. ∙ 0

The proliferative activity of breast tumors, which is routinely estimated by counting of mitotic figures in hematoxylin and eosin stained histology sections, is considered to be one of the most important prognostic markers. However, mitosis counting is laborious, subjective and may suffer from low inter-observer agreement. With the wider acceptance of whole slide images in pathology labs, automatic image analysis has been proposed as a potential solution for these issues. In this paper, the results from the Assessment of Mitosis Detection Algorithms 2013 (AMIDA13) challenge are described. The challenge was based on a data set consisting of 12 training and 11 testing subjects, with more than one thousand annotated mitotic figures by multiple observers. Short descriptions and results from the evaluation of eleven methods are presented. The top performing method has an error rate that is comparable to the inter-observer agreement among pathologists.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 6

page 7

page 17

page 18

page 20

Code Repositories

Digital-pathology

Reference papers on digital pathology


view repo
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.