Assessing the Uncertainty of Epidemiological Forecasts with Normalised Estimation Error Squared

11/08/2021
by   R. E. Moore, et al.
0

Estimates from infectious disease models have constituted a significant part of the scientific evidence used to inform the response to the COVID-19 pandemic in the UK. These estimates can vary strikingly in their precision, with some being over-confident and others over-cautious. The uncertainty in epidemiological forecasts should be commensurate with the errors in their predictions. We propose Normalised Estimation Error Squared (NEES) as a metric for assessing the consistency between forecasts and future observations. We introduce a novel infectious disease model for COVID-19 and use it to demonstrate the usefulness of NEES for diagnosing over-confident and over-cautious predictions resulting from different values of a regularization parameter.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro