ASAP-SML: An Antibody Sequence Analysis Pipeline Using Statistical Testing and Machine Learning

03/08/2020 ∙ by Xinmeng Li, et al. ∙ 0

Antibodies are capable of potently and specifically binding individual antigens and, in some cases, disrupting their functions. The key challenge in generating antibody-based inhibitors is the lack of fundamental information relating sequences of antibodies to their unique properties as inhibitors. We develop a pipeline, Antibody Sequence Analysis Pipeline using Statistical testing and Machine Learning (ASAP-SML), to identify features that distinguish one set of antibody sequences from antibody sequences in a reference set. The pipeline extracts feature fingerprints from sequences. The fingerprints represent germline, CDR canonical structure, isoelectric point and frequent positional motifs. Machine learning and statistical significance testing techniques are applied to antibody sequences and extracted feature fingerprints to identify distinguishing feature values and combinations thereof. To demonstrate how it works, we applied the pipeline on sets of antibody sequences known to bind or inhibit the activities of matrix metalloproteinases (MMPs), a family of zinc-dependent enzymes that promote cancer progression and undesired inflammation under pathological conditions, against reference datasets that do not bind or inhibit MMPs. ASAP-SML identifies features and combinations of feature values found in the MMP-targeting sets that are distinct from those in the reference sets.



There are no comments yet.


page 4

page 12

page 20

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.