Artwork Identification from Wearable Camera Images for Enhancing Experience of Museum Audiences

06/24/2018
by   Rui Zhang, et al.
0

Recommendation systems based on image recognition could prove a vital tool in enhancing the experience of museum audiences. However, for practical systems utilizing wearable cameras, a number of challenges exist which affect the quality of image recognition. In this pilot study, we focus on recognition of museum collections by using a wearable camera in three different museum spaces. We discuss the application of wearable cameras, and the practical and technical challenges in devising a robust system that can recognize artworks viewed by the visitors to create a detailed record of their visit. Specifically, to illustrate the impact of different kinds of museum spaces on image recognition, we collect three training datasets of museum exhibits containing variety of paintings, clocks, and sculptures. Subsequently, we equip selected visitors with wearable cameras to capture artworks viewed by them as they stroll along exhibitions. We use Convolutional Neural Networks (CNN) which are pre-trained on the ImageNet dataset and fine-tuned on each of the training sets for the purpose of artwork identification. In the testing stage, we use CNNs to identify artworks captured by the visitors with a wearable camera. We analyze the accuracy of their recognition and provide an insight into the applicability of such a system to further engage audiences with museum exhibitions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset