Artificial Intelligence as Structural Estimation: Economic Interpretations of Deep Blue, Bonanza, and AlphaGo

10/30/2017
by   Mitsuru Igami, et al.
0

Artificial intelligence (AI) has achieved superhuman performance in a growing number of tasks, including the classical games of chess, shogi, and Go, but understanding and explaining AI remain challenging. This paper studies the machine-learning algorithms for developing the game AIs, and provides their structural interpretations. Specifically, chess-playing Deep Blue is a calibrated value function, whereas shogi-playing Bonanza represents an estimated value function via Rust's (1987) nested fixed-point method. AlphaGo's "supervised-learning policy network" is a deep neural network (DNN) version of Hotz and Miller's (1993) conditional choice probability estimates; its "reinforcement-learning value network" is equivalent to Hotz, Miller, Sanders, and Smith's (1994) simulation method for estimating the value function. Their performances suggest DNNs are a useful functional form when the state space is large and data are sparse. Explicitly incorporating strategic interactions and unobserved heterogeneity in the data-generating process would further improve AIs' explicability.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset