Array-RQMC for option pricing under stochastic volatility models

05/28/2019 ∙ by Amal Ben Abdellah, et al. ∙ 0

Array-RQMC has been proposed as a way to effectively apply randomized quasi-Monte Carlo (RQMC) when simulating a Markov chain over a large number of steps to estimate an expected cost or reward. The method can be very effective when the state of the chain has low dimension. For pricing an Asian option under an ordinary geometric Brownian motion model, for example, Array-RQMC reduces the variance by huge factors. In this paper, we show how to apply this method and we study its effectiveness in case the underlying process has stochastic volatility. We show that Array-RQMC can also work very well for these models, even if it requires RQMC points in larger dimension. We examine in particular the variance-gamma, Heston, and Ornstein-Uhlenbeck stochastic volatility models, and we provide numerical results.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.