Arithmetic Binary Search Trees: Static Optimality in the Matching Model

12/26/2020 ∙ by Chen Avin, et al. ∙ 0

Motivated by recent developments in optical switching and reconfigurable network design, we study dynamic binary search trees (BSTs) in the matching model. In the classical dynamic BST model, the cost of both link traversal and basic reconfiguration (rotation) is O(1). However, in the matching model, the BST is defined by two optical switches (that represent two matchings in an abstract way), and each switch (or matching) reconfiguration cost is α while a link traversal cost is still O(1). In this work, we propose Arithmetic BST (A-BST), a simple dynamic BST algorithm that is based on dynamic Shannon-Fano-Elias coding, and show that A-BST is statically optimal for sequences of length Ω(n αlogα) where n is the number of nodes (keys) in the tree.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.