Are papers addressing certain diseases perceived where these diseases are prevalent? The proposal to use Twitter data as social-spatial sensors

04/29/2020 ∙ by Lutz Bornmann, et al. ∙ 0

We propose to use Twitter data as social-spatial sensors. This study deals with the question whether research papers on certain diseases are perceived by people in regions (worldwide) that are especially concerned by the diseases. Since (some) Twitter data contain location information, it is possible to spatially map the activity of Twitter users referring to certain papers (e.g., dealing with tuberculosis). The resulting maps reveal whether heavy activity on Twitter is correlated with large numbers of people having certain diseases. In this study, we focus on tuberculosis, human immunodeficiency virus (HIV), and malaria, since the World Health Organization ranks these diseases as the top three causes of death worldwide by a single infectious agent. The results of the social-spatial Twitter maps (and additionally performed regression models) reveal the usefulness of the proposed sensor approach. One receives an impression of how research papers on the diseases have been perceived by people in regions that are especially concerned by the diseases. Our study demonstrates a promising approach for using Twitter data for research evaluation purposes beyond simple counting of tweets.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 18

page 22

page 23

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.