Log In Sign Up

Architectural patterns for handling runtime uncertainty of data-driven models in safety-critical perception

by   Janek Groß, et al.

Data-driven models (DDM) based on machine learning and other AI techniques play an important role in the perception of increasingly autonomous systems. Due to the merely implicit definition of their behavior mainly based on the data used for training, DDM outputs are subject to uncertainty. This poses a challenge with respect to the realization of safety-critical perception tasks by means of DDMs. A promising approach to tackling this challenge is to estimate the uncertainty in the current situation during operation and adapt the system behavior accordingly. In previous work, we focused on runtime estimation of uncertainty and discussed approaches for handling uncertainty estimations. In this paper, we present additional architectural patterns for handling uncertainty. Furthermore, we evaluate the four patterns qualitatively and quantitatively with respect to safety and performance gains. For the quantitative evaluation, we consider a distance controller for vehicle platooning where performance gains are measured by considering how much the distance can be reduced in different operational situations. We conclude that the consideration of context information of the driving situation makes it possible to accept more or less uncertainty depending on the inherent risk of the situation, which results in performance gains.


page 1

page 2

page 3

page 4


Limits of Probabilistic Safety Guarantees when Considering Human Uncertainty

When autonomous robots interact with humans, such as during autonomous d...

Risk-Driven Design of Perception Systems

Modern autonomous systems rely on perception modules to process complex ...

Towards a Framework to Manage Perceptual Uncertainty for Safe Automated Driving

Perception is a safety-critical function of autonomous vehicles and mach...

On the role of working memory in trading-off skills and situation awareness in Sudoku

Working memory accounts for the ability of humans to perform cognitive p...

Towards Using Probabilistic Models to Design Software Systems with Inherent Uncertainty

The adoption of machine learning (ML) components in software systems rai...

Autonomous Vehicles Meet the Physical World: RSS, Variability, Uncertainty, and Proving Safety (Expanded Version)

The Responsibility-Sensitive Safety (RSS) model offers provable safety f...

An introduction to optimization under uncertainty – A short survey

Optimization equips engineers and scientists in a variety of fields with...