Architectural patterns for handling runtime uncertainty of data-driven models in safety-critical perception

by   Janek Groß, et al.

Data-driven models (DDM) based on machine learning and other AI techniques play an important role in the perception of increasingly autonomous systems. Due to the merely implicit definition of their behavior mainly based on the data used for training, DDM outputs are subject to uncertainty. This poses a challenge with respect to the realization of safety-critical perception tasks by means of DDMs. A promising approach to tackling this challenge is to estimate the uncertainty in the current situation during operation and adapt the system behavior accordingly. In previous work, we focused on runtime estimation of uncertainty and discussed approaches for handling uncertainty estimations. In this paper, we present additional architectural patterns for handling uncertainty. Furthermore, we evaluate the four patterns qualitatively and quantitatively with respect to safety and performance gains. For the quantitative evaluation, we consider a distance controller for vehicle platooning where performance gains are measured by considering how much the distance can be reduced in different operational situations. We conclude that the consideration of context information of the driving situation makes it possible to accept more or less uncertainty depending on the inherent risk of the situation, which results in performance gains.


page 1

page 2

page 3

page 4


Refining Obstacle Perception Safety Zones via Maneuver-Based Decomposition

A critical task for developing safe autonomous driving stacks is to dete...

Limits of Probabilistic Safety Guarantees when Considering Human Uncertainty

When autonomous robots interact with humans, such as during autonomous d...

Timeseries-aware Uncertainty Wrappers for Uncertainty Quantification of Information-Fusion-Enhanced AI Models based on Machine Learning

As the use of Artificial Intelligence (AI) components in cyber-physical ...

On the role of working memory in trading-off skills and situation awareness in Sudoku

Working memory accounts for the ability of humans to perform cognitive p...

Risk-Driven Design of Perception Systems

Modern autonomous systems rely on perception modules to process complex ...

Autonomous Vehicles Meet the Physical World: RSS, Variability, Uncertainty, and Proving Safety (Expanded Version)

The Responsibility-Sensitive Safety (RSS) model offers provable safety f...

An introduction to optimization under uncertainty – A short survey

Optimization equips engineers and scientists in a variety of fields with...

Please sign up or login with your details

Forgot password? Click here to reset