Arbitrarily Varying Wiretap Channel with State Sequence Known or Unknown at the Receiver

12/03/2017
by   Dan He, et al.
0

The secrecy capacity problems over the general arbitrarily varying wiretap channel (AVWC), with respect to the maximal decoding error probability and strong secrecy criterion, are considered, where the channel state sequence may be known or unknown at the receiver. In the mean time, it is always assumed that the channel state sequence is known at the eavesdropper and unknown at the transmitter. Capacity results of both stochastic code (with random encoder and deterministic decoder) and random code (with random encoder and decoder) are discussed. This model includes the previous models of classic AVWC as special cases. Single-letter lower bounds on the secrecy capacities are given, which are proved to be the secrecy capacities when the main channel is less noisy than the wiretap channel. The coding scheme is based on Csiszar's almost independent coloring scheme and Ahlswede's elimination technique. Moreover, a new kind of typical sequence with respect to states is defined for this coding scheme. It is concluded that the secrecy capacity of stochastic code is identical to that of random code when the receiver knows the state sequence. Meanwhile, random code may achieve larger secrecy capacity when the state sequence is unknown by the receiver.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset