Arbitrarily High-order Maximum Bound Preserving Schemes with Cut-off Postprocessing for Allen-Cahn Equations

02/26/2021
by   Jiang Yang, et al.
0

We develop and analyze a class of maximum bound preserving schemes for approximately solving Allen–Cahn equations. We apply a kth-order single-step scheme in time (where the nonlinear term is linearized by multi-step extrapolation), and a lumped mass finite element method in space with piecewise rth-order polynomials and Gauss–Lobatto quadrature. At each time level, a cut-off post-processing is proposed to eliminate extra values violating the maximum bound principle at the finite element nodal points. As a result, the numerical solution satisfies the maximum bound principle (at all nodal points), and the optimal error bound O(τ^k+h^r+1) is theoretically proved for a certain class of schemes. These time stepping schemes under consideration includes algebraically stable collocation-type methods, which could be arbitrarily high-order in both space and time. Moreover, combining the cut-off strategy with the scalar auxiliary value (SAV) technique, we develop a class of energy-stable and maximum bound preserving schemes, which is arbitrarily high-order in time. Numerical results are provided to illustrate the accuracy of the proposed method.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset