Approximation of the spectral fractional powers of the Laplace-Beltrami Operator

01/13/2021 ∙ by Andrea Bonito, et al. ∙ 0

We consider numerical approximation of spectral fractional Laplace-Beltrami problems on closed surfaces. The proposed numerical algorithms rely on their Balakrishnan integral representation and consists a sinc quadrature coupled with standard finite element methods for parametric surfaces. Possibly up to a log term, optimal rate of convergence is observed and derived analytically when the discrepancies between the exact solution and its numerical approximations are measured in L^2 and H^1.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.