Approximation Fixpoint Theory and the Well-Founded Semantics of Higher-Order Logic Programs

04/23/2018
by   Angelos Charalambidis, et al.
0

We define a novel, extensional, three-valued semantics for higher-order logic programs with negation. The new semantics is based on interpreting the types of the source language as three-valued Fitting-monotonic functions at all levels of the type hierarchy. We prove that there exists a bijection between such Fitting-monotonic functions and pairs of two-valued-result functions where the first member of the pair is monotone-antimonotone and the second member is antimonotone-monotone. By deriving an extension of consistent approximation fixpoint theory (Denecker et al. 2004) and utilizing the above bijection, we define an iterative procedure that produces for any given higher-order logic program a distinguished extensional model. We demonstrate that this model is actually a minimal one. Moreover, we prove that our construction generalizes the familiar well-founded semantics for classical logic programs, making in this way our proposal an appealing formulation for capturing the well-founded semantics for higher-order logic programs. This paper is under consideration for acceptance in TPLP.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro