Approximate Inference and Stochastic Optimal Control

09/20/2010 ∙ by Konrad Rawlik, et al. ∙ 0

We propose a novel reformulation of the stochastic optimal control problem as an approximate inference problem, demonstrating, that such a interpretation leads to new practical methods for the original problem. In particular we characterise a novel class of iterative solutions to the stochastic optimal control problem based on a natural relaxation of the exact dual formulation. These theoretical insights are applied to the Reinforcement Learning problem where they lead to new model free, off policy methods for discrete and continuous problems.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 14

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.