Approximate Equalities on Rough Intuitionistic Fuzzy Sets and an Analysis of Approximate Equalities

05/26/2012
by   B. K. Tripathy, et al.
0

In order to involve user knowledge in determining equality of sets, which may not be equal in the mathematical sense, three types of approximate (rough) equalities were introduced by Novotny and Pawlak ([8, 9, 10]). These notions were generalized by Tripathy, Mitra and Ojha ([13]), who introduced the concepts of approximate (rough) equivalences of sets. Rough equivalences capture equality of sets at a higher level than rough equalities. More properties of these concepts were established in [14]. Combining the conditions for the two types of approximate equalities, two more approximate equalities were introduced by Tripathy [12] and a comparative analysis of their relative efficiency was provided. In [15], the four types of approximate equalities were extended by considering rough fuzzy sets instead of only rough sets. In fact the concepts of leveled approximate equalities were introduced and properties were studied. In this paper we proceed further by introducing and studying the approximate equalities based on rough intuitionistic fuzzy sets instead of rough fuzzy sets. That is we introduce the concepts of approximate (rough)equalities of intuitionistic fuzzy sets and study their properties. We provide some real life examples to show the applications of rough equalities of fuzzy sets and rough equalities of intuitionistic fuzzy sets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro