Approximate Distance Oracles for Planar Graphs with Subpolynomial Error Dependency

07/12/2022
by   Hung Le, et al.
0

Thorup [FOCS'01, JACM'04] and Klein [SODA'01] independently showed that there exists a (1+ϵ)-approximate distance oracle for planar graphs with O(n (log n)ϵ^-1) space and O(ϵ^-1) query time. While the dependency on n is nearly linear, the space-query product of their oracles depend quadratically on 1/ϵ. Many follow-up results either improved the space or the query time of the oracles while having the same, sometimes worst, dependency on 1/ϵ. Kawarabayashi, Sommer, and Thorup [SODA'13] were the first to improve the dependency on 1/ϵ from quadratic to nearly linear (at the cost of log^*(n) factors). It is plausible to conjecture that the linear dependency on 1/ϵ is optimal: for many known distance-related problems in planar graphs, it was proved that the dependency on 1/ϵ is at least linear. In this work, we disprove this conjecture by reducing the dependency of the space-query product on 1/ϵ from linear all the way down to subpolynomial (1/ϵ)^o(1). More precisely, we construct an oracle with O(nlog(n)(ϵ^-o(1) + log^*n)) space and log^2+o(1)(1/ϵ) query time. Our construction is the culmination of several different ideas developed over the past two decades.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset