Applying the Quantum Alternating Operator Ansatz to the Graph Matching Problem

11/24/2020
by   Sagnik Chatterjee, et al.
0

The Quantum Alternating Operator Ansatz (QAOA+) framework has recently gained attention due to its ability to solve discrete optimization problems on noisy intermediate-scale quantum (NISQ) devices in a manner that is amenable to derivation of worst-case guarantees. We design a technique in this framework to tackle a few problems over maximal matchings in graphs. Even though maximum matching is polynomial-time solvable, most counting and sampling versions are #P-hard. We design a few algorithms that generates superpositions over matchings allowing us to sample from them. In particular, we get a superposition over all possible matchings when given the empty state as input and a superposition over all maximal matchings when given the W -states as input. Our main result is that the expected size of the matchings corresponding to the output states of our QAOA+ algorithm when ran on a 2-regular graph is greater than the expected matching size obtained from a uniform distribution over all matchings. This algorithm uses a W -state as input and we prove that this input state is better compared to using the empty matching as the input state.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset