Applying Chebyshev-Tau spectral method to solve the parabolic equation model of wide-angle rational approximation in ocean acoustics

12/04/2020
by   Houwang Tu, et al.
0

Solving an acoustic wave equation using a parabolic approximation is a popular approach for many available ocean acoustic models. Commonly used parabolic equation (PE) model programs, such as the range-dependent acoustic model (RAM), are discretized by the finite difference method (FDM). Considering the idea and theory of the "split-step" parabolic approximation, a discrete PE model using the Chebyshev spectral method (CSM) is derived, and the code is developed. We use the problems of two ideal fluid waveguides as examples, i.e., one with a constant sound speed in shallow water and one with a Munk sound speed profile in the deep ocean. The correctness of the discrete PE model using the CSM to solve a simple underwater acoustic propagation problem is verified. The test results show that compared with the finite difference discrete PE model, the proposed method in this paper has a higher accuracy in the calculation of underwater acoustic propagation in a simple marine environment and requires fewer discrete grid points. However, the proposed method has a longer running time than the finite difference discrete PE program. Thus, it is suitable to provide high-precision reference standards for the benchmark examples of the PE model.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro