Anyone GAN Sing

02/22/2021
by   Shreeviknesh Sankaran, et al.
0

The problem of audio synthesis has been increasingly solved using deep neural networks. With the introduction of Generative Adversarial Networks (GAN), another efficient and adjective path has opened up to solve this problem. In this paper, we present a method to synthesize the singing voice of a person using a Convolutional Long Short-term Memory (ConvLSTM) based GAN optimized using the Wasserstein loss function. Our work is inspired by WGANSing by Chandna et al. Our model inputs consecutive frame-wise linguistic and frequency features, along with singer identity and outputs vocoder features. We train the model on a dataset of 48 English songs sung and spoken by 12 non-professional singers. For inference, sequential blocks are concatenated using an overlap-add procedure. We test the model using the Mel-Cepstral Distance metric and a subjective listening test with 18 participants.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro