Anti-Neuron Watermarking: Protecting Personal Data Against Unauthorized Neural Model Training

09/18/2021
by   Zihang Zou, et al.
6

In this paper, we raise up an emerging personal data protection problem where user personal data (e.g. images) could be inappropriately exploited to train deep neural network models without authorization. To solve this problem, we revisit traditional watermarking in advanced machine learning settings. By embedding a watermarking signature using specialized linear color transformation to user images, neural models will be imprinted with such a signature if training data include watermarked images. Then, a third-party verifier can verify potential unauthorized usage by inferring the watermark signature from neural models. We further explore the desired properties of watermarking and signature space for convincing verification. Through extensive experiments, we show empirically that linear color transformation is effective in protecting user's personal images for various realistic settings. To the best of our knowledge, this is the first work to protect users' personal data from unauthorized usage in neural network training.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset