Angles of Arc-Polygons and Lombardi Drawings of Cacti

07/08/2021
by   David Eppstein, et al.
0

We characterize the triples of interior angles that are possible in non-self-crossing triangles with circular-arc sides, and we prove that a given cyclic sequence of angles can be realized by a non-self-crossing polygon with circular-arc sides whenever all angles are at most pi. As a consequence of these results, we prove that every cactus has a planar Lombardi drawing (a drawing with edges depicted as circular arcs, meeting at equal angles at each vertex) for its natural embedding in which every cycle of the cactus is a face of the drawing. However, there exist planar embeddings of cacti that do not have planar Lombardi drawings.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset