Analyzing Thermal Buckling in Curvilinearly Stiffened Composite Plates with Arbitrary Shaped Cutouts Using Isogeometric Level Set Method
In this paper we develop a new simple and effective isogeometric analysis for modeling thermal buckling of stiffened laminated composite plates with cutouts using level sets. We employ a first order shear deformation theory to approximate the displacement field of the stiffeners and the plate. Numerical modeling with a treatment of trimmed objects, such as internal cutouts in terms of NURBS-based isogeometric analysis presents several challenges, primarily due to need for using the tensor product of the NURBS basis functions. Due to this feature, the refinement operations can only be performed globally on the domain and not locally around the cutout. The new approach can overcome the drawbacks in modeling complex geometries with multiple-patches as the level sets are used to describe the internal cutouts; while the numerical integration is used only inside the physical domain. Results of parametric studies are presented which show the influence of ply orientation, size and orientation of the cutout and the position and profile of the curvilinear stiffeners. The numerical examples show high reliability and efficiency of the present method compared with other published solutions and ABAQUS.
READ FULL TEXT