Analyzing the Strategy of Propaganda using Inverse Reinforcement Learning: Evidence from the 2022 Russian Invasion of Ukraine

07/24/2023
by   Dominique Geissler, et al.
0

The 2022 Russian invasion of Ukraine was accompanied by a large-scale, pro-Russian propaganda campaign on social media. However, the strategy behind the dissemination of propaganda has remained unclear, particularly how the online discourse was strategically shaped by the propagandists' community. Here, we analyze the strategy of the Twitter community using an inverse reinforcement learning (IRL) approach. Specifically, IRL allows us to model online behavior as a Markov decision process, where the goal is to infer the underlying reward structure that guides propagandists when interacting with users with a supporting or opposing stance toward the invasion. Thereby, we aim to understand empirically whether and how between-user interactions are strategically used to promote the proliferation of Russian propaganda. For this, we leverage a large-scale dataset with 349,455 posts with pro-Russian propaganda from 132,131 users. We show that bots and humans follow a different strategy: bots respond predominantly to pro-invasion messages, suggesting that they seek to drive virality; while messages indicating opposition primarily elicit responses from humans, suggesting that they tend to engage in critical discussions. To the best of our knowledge, this is the first study analyzing the strategy behind propaganda from the 2022 Russian invasion of Ukraine through the lens of IRL.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset