Analyzing the Robustness of PECNet

10/15/2022
by   Aryan Garg, et al.
0

Comprehensive robustness analysis of PECNet, a pedestrian trajectory prediction system for autonomous vehicles. A novel metric is introduced for dataset analysis and classification. Synthetic data augmentation techniques ranging from Newtonian mechanics to Deep Reinforcement Learning based simulations are used to improve and test the system. An improvement of 9.5 over state-of-the-art results is seen on the FDE while compromising ADE. We introduce novel architectural changes using SIRENs for higher precision results to validate our robustness hypotheses. Additionally, we diagrammatically propose a novel multi-modal system for the same task.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro