Analyzing Midpoint Subdivision

11/26/2009
by   Hartmut Prautzsch, et al.
0

Midpoint subdivision generalizes the Lane-Riesenfeld algorithm for uniform tensor product splines and can also be applied to non regular meshes. For example, midpoint subdivision of degree 2 is a specific Doo-Sabin algorithm and midpoint subdivision of degree 3 is a specific Catmull-Clark algorithm. In 2001, Zorin and Schroeder were able to prove C1-continuity for midpoint subdivision surfaces analytically up to degree 9. Here, we develop general analysis tools to show that the limiting surfaces under midpoint subdivision of any degree >= 2 are C1-continuous at their extraordinary points.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro