Analysis of the Shifted Boundary Method for the Poisson Problem in General Domains

by   Nabil M. Atallah, et al.

The shifted boundary method (SBM) is an approximate domain method for boundary value problems, in the broader class of unfitted/embedded/immersed methods. It has proven to be quite efficient in handling problems with complex geometries, ranging from Poisson to Darcy, from Navier-Stokes to elasticity and beyond. The key feature of the SBM is a shift in the location where Dirichlet boundary conditions are applied - from the true to a surrogate boundary - and an appropriate modification (again, a shift) of the value of the boundary conditions, in order to reduce the consistency error. In this paper we provide a sound analysis of the method in smooth and non-smooth domains, highlighting the influence of geometry and distance between exact and surrogate boundaries upon the convergence rate. Without loss of generality, we consider the Poisson problem with Dirichlet boundary conditions as a model and we first detail a procedure to obtain the crucial shifting between the surrogate and the true boundaries. Next, we give a sufficient condition for the well-posedness and stability of the discrete problem. The behavior of the consistency error arising from shifting the boundary conditions is thoroughly analyzed, for smooth boundaries and for boundaries with corners and edges. The convergence rate is proven to be optimal in the energy norm, and is further enhanced in the L^2-norm.



page 23


The Second-Generation Shifted Boundary Method and Its Numerical Analysis

Recently, the Shifted Boundary Method (SBM) was proposed within the clas...

Convergence in the maximum norm of ADI-type methods for parabolic problems

Results on unconditional convergence in the Maximum norm for ADI-type me...

Weakly imposed Dirichlet boundary conditions for 2D and 3D Virtual Elements

In the framework of virtual element discretizazions, we address the prob...

Natural Boundary Conditions for Smoothing in Geometry Processing

In geometry processing, smoothness energies are commonly used to model s...

Robin Pre-Training for the Deep Ritz Method

We compare different training strategies for the Deep Ritz Method for el...

Truncation Error Analysis for an Accurate Nonlocal Manifold Poisson Model with Dirichlet Boundary

In this work, we introduced a class of nonlocal models to accurately app...

Boundary Value Exploration for Software Analysis

For software to be reliable and resilient, it is widely accepted that te...
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.