Analysis of the robustness of NMF algorithms

06/04/2021
by   Alex Díaz, et al.
0

We examine three non-negative matrix factorization techniques; L2-norm, L1-norm, and L2,1-norm. Our aim is to establish the performance of these different approaches, and their robustness in real-world applications such as feature selection while managing computational complexity, sensitivity to noise and more. We thoroughly examine each approach from a theoretical perspective, and examine the performance of each using a series of experiments drawing on both the ORL and YaleB datasets. We examine the Relative Reconstruction Errors (RRE), Average Accuracy and Normalized Mutual Information (NMI) as criteria under a range of simulated noise scenarios.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro