Analysis of Machine Learning Approaches to Packing Detection

05/02/2021 ∙ by Charles-Henry Bertrand Van Ouytsel, et al. ∙ 0

Packing is an obfuscation technique widely used by malware to hide the content and behavior of a program. Much prior research has explored how to detect whether a program is packed. This research includes a broad variety of approaches such as entropy analysis, syntactic signatures and more recently machine learning classifiers using various features. However, no robust results have indicated which algorithms perform best, or which features are most significant. This is complicated by considering how to evaluate the results since accuracy, cost, generalization capabilities, and other measures are all reasonable. This work explores eleven different machine learning approaches using 119 features to understand: which features are most significant for packing detection; which algorithms offer the best performance; and which algorithms are most economical.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.