Analysis of Ergodic Rate for Transmit Antenna Selection in Low-Resolution ADC Systems
In this paper, we analyze the ergodic rate of single transmit antenna selection (TAS) in low-resolution analog-to-digital converter (ADC) systems. Using low-resolution ADCs is a potential power-reduction solution for multiple antenna systems. Low-resolution ADC systems with TAS can further reduce cost and power consumption in wireless transceivers. Considering such systems, we derive the approximated lower bound of ergodic rate with TAS. Here, we exploit the approximated distribution of the sum of Weibull random variables to address the challenge involved in analyzing the quantization error. We, then, derive the approximated ergodic rate with TAS for a single receive antenna in closed form, which reveals the TAS gain in low-resolution ADC systems. The upper bound of a single transmit/receive antenna system under coarse quantization is derived to compare with the ergodic rate of the TAS system. The analysis shows that the TAS method achieves a large improvement in ergodic rate with a moderate number of transmit antennas. Simulation results validate the derived ergodic rates and resulting intuition.
READ FULL TEXT