Analysis of a Memory-Efficient Self-Stabilizing BFS Spanning Tree

07/18/2019
by   Ajoy K. Datta, et al.
0

We present results on the last topic we collaborate with our late friend, Professor Ajoy Kumar Datta (1958-2019). In this work, we shed new light on a self-stabilizing wave algorithm proposed by Colette Johnen in 1997. This algorithm constructs a BFS spanning tree in any connected rooted network. Nowadays, it is still the best existing self-stabilizing BFS spanning tree construction in terms of memory requirement, i.e., it only requires Θ(1) bits per edge. However, it has been proven assuming a weakly fair daemon. Moreover, its stabilization time was unknown. Here, we study the slightly modified version of this algorithm, still keeping the same memory requirement. We prove the self-stabilization of this variant under the distributed unfair daemon and show a stabilization time in O(D.n^2) rounds, where D is the network diameter and n the number of processes.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro