Analysis and Simulations of a Nonlocal Gray-Scott Model
The Gray-Scott model is a set of reaction-diffusion equations that describes chemical systems far from equilibrium. Interest in this model stems from its ability to generate spatio-temporal structures, including pulses, spots, stripes, and self-replicating patterns. We consider an extension of this model in which the spread of the different chemicals is assumed to be nonlocal, and can thus be represented by a convolution term. In particular, we focus on the case of strictly positive, symmetric, L^1 convolution kernels that have a finite second moment. Modeling the equations on a finite interval, we prove the existence of small-time weak solutions in the case of nonlocal Dirichlet and Neumann boundary constraints. We then use this result to develop a finite element numerical scheme that helps us explore the effects of nonlocal diffusion on the formation of pulse solutions.
READ FULL TEXT