Analysis and Optimization of Deep CounterfactualValue Networks

07/02/2018
by   Eneldo Loza Mencía, et al.
0

Recently a strong poker-playing algorithm called DeepStack was published, which is able to find an approximate Nash equilibrium during gameplay by using heuristic values of future states predicted by deep neural networks. This paper analyzes new ways of encoding the inputs and outputs of DeepStack's deep counterfactual value networks based on traditional abstraction techniques, as well as an unabstracted encoding, which was able to increase the network's accuracy.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset